FEN LOGIC LTD.

Gertboard User Manual

Gert van Loo and Myra Vanlnwegen

Revision 1.0

The Gertboard is an add-on GPIO expansion board for the Raspberry Pi computer. It comes with a
large variety of components, including buttons, LEDs, A/D and D/A converters, a motor controller,
and an Atmel AVR microcontroller. There is a suite of test/example programs for the Gertboard,
written in C, which is freely available at www.element14.com/raspberrypi This manual explains both

how to set up the Gertboard for various control experiments and also explains at a high level how
the test code works.

Contents

GEItDOAIA OVEIVIEW....c..eiiiiiiiiiiiieniteete ettt ettt et sb e st s ettt s bttt e s bt e sbeesaeeeateeteenbeesbeesneenas 4
Labels 0n the CIrCUit DOATM.cocuiiitiiiiiiiiiiie ettt ettt ettt e sbeesbeesbeesaeeeas 5
Location of the building blocks on the Gertboardccoocveeriiiiiriiiniie e 7
JUMPETS QNA SITAPS ...ttt ettt bttt eab e et e e bt et e bt e sbee s bt e saeeeateenteebeesbeesbeesaneeas 8
(€1 2 [0 150304 OSSPSR 8
SCREIMALICS ...eentietie ettt ettt h e s h e et e et e e bt e bt e bt e sbtesaeeeate e beebeesbeesueesabesabeenbeenbeenss 9
TSt PrOGIAIMNS OVEIVIEW ...eeeuvieeruieeeritierteeenuteesteestreessseesseeessseessseesnseeesssessssseessseesnssessssesssesssseeessseesn 9

IMIACTOS. ...ttt ettt ettt et e bt e s h e sbte s at e et e bt e bt e bt e sb et sat e et e et e e bt e s heesae e st eabeeneenee 10

Buffered /O, LEDs, and PUShDULIONS.......cc.eoittertieiieiieeie ettt ettt ettt st st 11
PUSH DULTOMS ..ttt ettt sttt et e s b e sbe e st saneeneebeenee 12
Locating the relevant sections of the Gertboardc.cociereeiieniiniiniieeee e 12
TeStiNg the PUSHDULIONSccviiiiiiiiiiieeiie ettt ettt st e e st e st e s steesbaesaseesnsaesnseeesnseenn 14
TeStING the LLEDS ...ttt ettt b e at e st e e e be e sbeesaeesatesabeeabeenbeeais 16
TESTNZ /O ittt et e et e et e e s abe e e ab e e s abaesnbeeesaseesntaeensbeesnbaeensseeansaesnseeennseenn 18

OPEN COIIECLOT DITTVET....c..eeiiriieiiriieiieie ettt b et s bt et e st sbeenesbeeseennesbeenee 19
Testing the OPen COIECIOT ATIVETIS .. .uiiiiiieiiieeriieiiieeriieeeite et e steeeteeeebeesbeeesbeesbeeesaseesssaesnseessnseens 20

IMOLOT CONEIOILET ..ttt ettt et e b e s b sbe e st e bt e bt e sbeesbeesaeesateeaneenneenne 22
Testing the MOLOT CONLIOLLET.cc..iruiriiriirieiereeteteeit ettt sttt bbb b b saeeee b eanes 23

Digital to Analogue and Analogue to Digital CONVEITEIS.......ceevvriervrerirreeriieerieeeriieeeveesireenereesveeennnes 25
Digital t0 AaNAlOZUE COMVETTETc..erveererterieeienieetenteeteetesteetesteeteebesreestesbesaeensesbeestesbeeseensesbeensensesnnen 25
ANAlOZUE 10 DIZItaAl CONMVEITETeiiuiiiriieeitieerieeeiteeestteeetteesiteesteessteeessseesseeasteesseesssseessseessseessnseens 26
Testing the D/A and A/D ...c.ooiiiiiieieieee ettt sttt st ettt e eanes 26

ATMEZA AEVICE ...veeivieeiit ettt ettt ettt e st e ettt e sate e sttt e ssbeessteeesteessbeeensseeassaesnsaeesnseesnseesnsseesnseeennses 29
Programming the ATMEZA.......cccerirriiririiieieetee ettt sttt ettt sbe e besaeeaesbeeanes 30

Arduino pins 0N the GErtbOATd.eeviiieriiiiiiieriee ettt et e etee e sre e steesaee e sabeesbeeesseesnbeeenns 30
A few SKEtChes tO Gt YOU QOMME ..evuviiiiiieeiieerieeriieerieeeteeeieeestteesteeessseessseessseeessseesseessssesssseennns 31
IMHICOML .ttt ettt ettt ettt ettt ettt e bt e bt e s bt e suteeat e e bt e bt e bt e bt e saeeeaeeemteenbeesbeesatesabesabeenbeenbeenss 36

COMDINEA TESES ettt ettt ettt et e bt e s bt e satesatesabe e bt e bt esbeesbeesbaesaeeeneean 38
A/D and MOLOT CONETOLIET ...cc.uiitiiiiiiiit ettt ettt sttt et sbe e sbeesate st e eabeeabeebeees 38
DIBCOMET ..ttt ettt ettt et et b e s bt s bt e a e ettt e s b e e bt sat e et eb e b ebee 39

FOr MOTe INTOTMAIONiitieiiieiieiete ettt ettt ettt b e st st et e et e e bt e sbeesatesateeabeeabeenbeenes 40

Gertboard Overview
Raspi

[CO0O0000000000000J

o stwpngaea

[Ooocoo0o] ool |[o0oo00c00000000] [00] [0O0o0 O O]
gpI

PWM /0 UAET /0 —

. >

D xx in o
A Motor 1 o - o °
MCP4302 k| Micro controller % o)
controller 12x 1 s o)
A L6203 | 7axx244 ATmega 6 0o
0 Wi Lggg (8] |0
MCP3002 S| 5] g O

[0oo0o0] [ooooo0OO 000000000000 s

OO0O0O00O0 [oNoNoNoNoNoNONONORONONG] ULN2803a

Fig. 1: The principle, high level diagram of the Gertboard. In this view it is possible to see how
flexible Gertboard is, by being able to connect various parts of the board together.

Above is a principle diagram' of the Gertboard. Each circle in the diagram represents a header pin.
These headers give you access to a wide range of control combinations. As you begin experimenting
with the board, you will probably use the strapping area to connect various components on the
Gertboard to the Raspberry Pi. This flexibility even allows you, for example, to connect the motor
controller input pins to the Atmel ATmega device (an AVR microcontroller). The ATmega device has
a separate 6-pin header, which allows it to be programmed by the Raspberry Pi using the (Serial
Peripheral Interface) SPI bus.

The major building blocks are:

e 12x buffered I/O

e 3x push buttons

e 6x open collector drivers (50V, 0.5A)

e 48V, 4A motor controller

e 28-pin dual in line ATmega microcontroller

e 2-channel 8/10/12 bit Digital to Analogue converter
e 2-channel 10 bit Analogue to Digital converter

Each of these building blocks has a section below.

YA ‘principle diagram’ is a coarse overview of the most important parts of the system. It is not correct in all details. For that
you must look at the board schematics.

Labels on the circuit board

Raspberry Pi

1/0 extension
1 March 2012

Fuse max. 4A

Fig. 2: A photograph of the unpopulated Gertboard viewed from above, showing the silver
coloured holes and pads that eventually will be home to the components, as well as the
legends printed in white epoxy ink, and green solder resist coating.

W 2o 2 Sl 2 2 2 2 83,2023,
El-|§|ooooooooooooooooooooooolm E) o
3@uu) éq%w i

GND o\ /0\ /0\ /® @ o\ 7@ F1 Fuse max. 4A
LAIEPO00000000 IR m ;
w00l gy 1T e W is o8 o/
el 0000 3 YYYYYYYIY) 3V’|§| soe
PS5 @m sejecieee

o0 Us U4 (XXX X
l’:g; .R4. ¢ Rm B1 _B2out B3 (XXX
e e/leeee mmmm cnu|§| eeooooe ©
0y oooooooooo eecjecjoce ©
PBO|® ® uto B out X0 e ©
nilee] HOO® v C'DEEM (0 o ©
rosle @ MEkn oI @ H000000000 0000000000 g0 e o
P05001- o o r@0000000 s ::. : :
PD4|® @ [® x
PD3(@ ® el (e |Ji71| H000000000 o0 e o

@eececocce0

miee ™mEel |o leceeeee = i
mojoe| I mue |em ™ somzoens B9 B0 jn BN _ 0 'E3V3
jee| zsZe [. oEmoceeS3, mmn (ol
cz@® 3 cel |@ Raspberry Pi 39999 : OB} mEl 9
Pm;Ji‘ %‘?3: : I1/10Mext?‘nsii(g){\2 555 &5 " BB
PCO|@ M} pyy 235 arc 00000]

‘e me®L - " [0]3vs 0000008 5V Vx 0

Fig. 3: This image is a diagrammatic representation of the same photograph shown in Fig. 2
above. It was generated from the same files that were used to create the physical printed
circuit board. The blue elements in the diagram correspond to the white text and lines on the
photo and the red elements correspond to the silver pads and holes on the photo.

From now onwards in this guide, because it is much clearer to see, the diagram shown in Fig. x will
be used in preference to show you how to wire up the Gertboard, and to run the test and example
programs.

It is useful to be able to look at the bare board in order to see the labels (the white text in the photo
and the blue text in the diagram) on the board without the components getting in the way. These labels
provide essential information that is required in order to use Gertboard to its full potential. Almost all
of the components have labels, and more importantly, the pins in the headers have labels.

It isn’t necessary to be too concerned about the majority of the components; such as resistors and
capacitors (labelled with Cn and Rn, where n is some number). These are fairly simple devices that
don’t have a ‘right way round” when they are assembled to the board. Diodes on the other hand, do
need assembling the right way round (covered later) - all the diodes are labelled Dn; of these, the ones
that you will be interested in are D1 through D12, the light emitting diodes (LEDs; they are located
near the top of the board on the left). Pushbutton switches are labelled S1, S2, and S3 (they are
located just beneath the LEDs).

8 7 6 5 20 19 18 17 16 15 14 13 12 11

oo0aad o000 0o0000ad
D D

ooaoaod oooo0ooobooadad

1 2 3 4 1 2 3 4 5 6 7 8 910

Fig. 4: Two examples of ICs — an 8-pin and a 20-pin
dual-inline (DIL) package. In this package style, pin
1 is always identified as the first pin anticlockwise
from the package notch marking.

Integrated circuits, or ICs, are marked Un, so for example the 1/0 buffer chips are U3, U4, and U5
(these are near the middle of the board), while the Atmel microcontroller is U8 (this is below and to
the left of U3 to US5). For the ICs, it is very important to know which is pin 1. If the IC is orientated so
that the end with the semi-circle notch is to the left, then pin 1 is the leftmost pin in the bottom row.
On the Gertboard, the location of pin 1 is always marked with a square pad. Pin numbers increase in
an anti-clockwise direction from there, as shown in the diagram. Knowing this means that the
schematics in Appendix A can always be related to the pinning on the ICs on the Gertboard.

Headers (the rows of pins sticking up from the board) will be a frequently used component on the
Gertboard. They are labelled Jn, so for example the header to the ribbon cable from the Raspberry Pi
is attached, is J1. Pin 1 on the headers is again marked with a square pad.

Power pins are marked with their voltage; for example there are a few positions marked 3V3. This is a
commonly used notation in electronics, and in this case it means 3.3 volts. A 5V power supply comes
onto the board via the GPIO connector, but the standard Gertboard assembly instructions do not
require that a header is installed to access this. If 5V is really required, and spare header pins are
available, a header can be soldered in location J24 in the lower right-hand corner of the board, and
then a 5V supply can be picked up from the lower pin (next to the text ‘5V’). Ground is marked with
GND or a L symbol.

Location of the building blocks on the Gertboard

], | e m LTy :

0(0 @.@ ;
lololoolo o]

T e

L
B(
b
b
B
=
=
b

aspberry Pi
10 extension
1l March 2012

O]

: buffered /O (+ switches and LEDs) Atmel ATmega chip

open collector driver I:' GPIO pins

: motor controller | AtoDandD to A converters

Fig. 5: Photograph of an assembled Gertboard, with key functional blocks identified by
coloured boundary marking. This image serves as a good reference point for a board that has
been successfully assembled from bare board and components. Please note that the appearance
of some components can vary.

This annotated photo of a populated Gertboard shows where the building blocks (the major
capabilities of the board) are located. Some of the building blocks have two areas marked. For
example, the turquoise lines showing the Atmel ATmega chip not only surround the chip itself (on the
lower left) but also surround two header pins near the bottom of the board, in the middle. These pins
are connected to the Atmel chip and provide an easy way to interface the GPIO signals from the
Raspberry Pi (which are in the black box) with the Atmel chip.

The supply voltage (the voltage that acts as high or logical 1 on the board) is 3.3V. This is generated
from the 5V power pin in the J1 header (the one where the ribbon cable to the Raspberry Pi is
attached) by the components in the lower right corner of the board. The open collector and motor
controllers can handle higher voltages and have points to attach external power supplies.

Jumpers and straps

Fig. 6: Image showing straps on the left hand side, and jumpers on the right. Straps connect two
parts of Gertboard together, whilst jumpers conveniently connect two adjacent pins on the same
header, together. The Gertboard Kit contains materials to produce single straps, although the
double strap also shown can also be useful.

To work properly, and get the maximum flexibility from the Gertboard a number of straps and
jumpers are essential. On the left of the photo are straps: they consist of wires that connect the small
metal connector and plastic housing, that slip over the header pins. They are meant for connecting
header pins that are further apart. It is sometimes useful to have straps that connect two or three
adjacent pins to the same number of adjacent pins elsewhere on the board. This is useful for example
when you want to use several LEDs. On the right of the above photo are jumpers: they are used to
connect two header pins that are right next to each other.

There is one jumper that should be in place at all times on the board: the one connecting pins 1 and 2
in header J7. This is the jumper that connects power from the power input pins to the rest of the board.
It is near the lower right corner of the board and is the jumper connecting the two pins below the text
3V3 in the photo below.

Fig. 7: Image showing header J7 with
translucent jumper in place. J7 is located just
above J8 (J7 legend is obscured in this image)

GPIO pins

The header J2, to the right of the text ‘Raspberry Pi’ on the board, provides access to all the I/O pins
on the GPIO header. There are 26 pins in J1 (the GPIO header which is connected to the Raspberry Pi
through the ribbon cable) but only 17 pins in J2: 3 of the pins in J1 are power and ground, and 6 are
DNC (do not connect). The labels on these pins, GP0, GP1, GP4, GP7, etc, may initially seem a little
arbitrary, as there are some obvious gaps, and the numbers do not correspond with the pin numbers on
the GPIO header J1. These labels are important however: they correspond with the signal names used

by the BCM2835, the processor on the Raspberry Pi. Signal GPIOn on the BCM2835 datasheet
corresponds to the pin labelled GPn on header J2 (so for example, GPIO17 on the data sheet can be
found at the pin labelled GP17 on the board). The numbers in the labels allow us to specify which
pins are required in the control programs to be run later.

Some of the GPIO pins have an alternate function that are made use of in some of the test programs.
These are shown in the table below. The rest are only used as general purpose input/output in the
code. On page 27 there is a description of how to gain access to the alternate functions of GPIO pins.

GPIO0 SDAO (alt 0))
I"C bus
GPIO1 SLCO (alt 0)
GPI10O7 SPI_CEI_N (alt 0)
GPIOS SPI_CEO_N (alt 0)
GPIO9 SPI_MISO (alt 0) SPI bus
GPIO10 SPI_MOSI (alt 0)
GPIO11 SPI_SCLK (alt 0)
GPIO14 TXDO (alt 0) UART
GPIO15 RXDO (alt 0)
GPIO18 PWMO (alt 5) pulse width modulation

Table 1: Table showing the GPIO pins on the Gertboard, and what their alternative function is.

We mention the I°C bus use of GPIO0 and 1 above not because the I°C bus is used in the test
programs, but because each of them has a 1800 pull-up resistor on the Raspberry Pi, and this
prevents them from being used with the pushbuttons (see page 134).

Schematics

Whilst there are some circuit diagrams, or schematics, in the main body of the manual for some of the
building blocks of the board, they are simplifications of the actual circuits on the board. To truly
understand the board and the connections you need to make on it, you need to be a little familiar with
the schematics. Thus we have attached the full schematics at the end of this manual as Appendix A.
These pages are in landscape format. The page numbers A-1, A-2, etc, are in the lower left corner of
the pages (if you hold them so that the writing is the right way up).

Test programs overview

When you download the Gertboard test/example code (available at www.element14.com/raspberrypi),
you will have a file with a name something like gertboard_sw_10_07_12.tar.gz. Thisisa
compressed (hence the . gz suffix, which means it was compressed using the gzip algorithm) archive
(hence the . tar), where an archive is a collection of different files, all stored in a single file.

To retrieve the original software, put the file where you want your Gertboard software to end up on
your Raspberry Pi computer, then uncompress it by typing the following in one of the terminal
windows on your Pi (substituting the name of the actual file you have downloaded for the file name
we are using in this example):

gunzip gertboard_sw_10_07_12.tar.gz

Typing a directory command, 1s, should then show the newly uncompressed archive file
gertboard_sw_10_07_12.tar . So now, to extract the files from the archive, type

tar —-xvf gertboard_sw_10_07_12.tar

A new directory, gertboard_sw, will be created. In it is a set of C files and a makefile. C files are
software files, but they need to be compiled to run on the processor on your system. In the case of
Raspberry Pi, this is an ARM11. To compile all the code to run on Raspberry Pi, first change
directory to gertboard_sw by typing:

cd gertboard_sw
And then in that directory, type:
make all

Each building block has at least one test program that goes with it. Currently the test programs are
written in C; but they’ll be translated into Python in the near future. Each test program is compiled
from two or more C files. The file gb_ common . ¢ (which has an associated header file
gb_common . h) contains code used by all of the building blocks on the board. Each test has a C file
that contains code specific to that test (thus you will find main here). Some of the tests use a special
interface (for example the SPI bus), and these tests have an additional C file that provides code
specific to that interface (these files are gb_spi . ¢ for the SPI bus and gb_pwm for the pulse width
modulator).

In each of the sections about the individual building blocks, the code specific to the tests for that block
is explained. Since all of the tests share the code in gb_common . ¢, an overview of that code will be
given here. In order to use the Gertboard via the GPIO, the test code first needs to call setup_1io.
This function allocates various arrays and then calls mmap to associate the arrays with the devices that
it wants to control, such as the GPIO, SPI bus, PWM (pulse width modulator) etc. The result of this is
that it writes to these arrays control the devices or sends data to them, and reads from these arrays get
status bits or data from the devices. At the end of a test program, restore_io should be called,
which undoes the memory map and frees the allocated memory.

Macros
In gb_common.h, gb_spi.h, and gb_pwm. h there are a number of macros that give a more
intuitive name to various parts of the arrays that have been mapped. These macros are used to do
everything from setting whether a GPIO is used as input or output to controlling the clock speed of
the pulse width modulator. In the chart below is a summary of the purpose of the more commonly
used macros and give the page number on which its use is explained in more detail. The T column
below gives the ‘type’ of the macro. This shows how the macro is used. ‘E’ means that the command
1s executed, as in:

INP_GPIO(17);

‘W’ means that that the command is written to (assigned), as in:
GPIO_PULL = 2;

‘R’ means that that the command is read from, as in:
data = GPIO_INO;

Macro name T Explanation Page no.
INP_GPIO(n) E activates GPIO pin number n (for input) 11
OUT_GPIO (n) E used after above, sets pin n for output 11
SET_GPIO_ALT (n, a) | E | used after INP_GPIO, select alternate function for pin 24
GPIO_PULL W set pull code 16
GPIO_PULLCCLKO w select which pins pull code is applied to 16
GPIO_INO R get input values 16
GPIO_SETO w select which pins are set high 17
GPIO_CLRO W select which pins are set low 17

Table 2: Commonly used macros, their purpose, type and location within this manual.

The macro INP_GPIO (n) must be called for a pin number n to allow this pin to be used. By default
its mode is set up as an input. If it is required that the pin is used for an output, OUT_GPIO (n) must
be called after INP_GPIO (n).

Buffered 1/0, LEDs, and pushbuttons

There are 12 pins which can be used as input or output ports. Each can be set to behave either as an
input or an output, using a jumper. Note that the terms ‘input’ and ‘output’ here are always with
respect to the Raspberry Pi: in input mode, the pin inputs data to the Pi; in output mode it acts as
output from the Pi. It is important to keep this in mind as the Gertboard is set up: an output from the
Gertboard is an input to the Raspberry Pi, and so the ‘input’ jumper must be installed to implement
this.

. |
RaspiO
input |: | $

Fig. 8: The circuit diagram for 1/0 ports 4-12

The triangles symbols in the diagram above represent buffers. In order to make the port function as an
input to the Raspberry Pi you install the ‘input’ jumper: then the data flows from the ‘I/O’ point to the
‘Raspi’ point. To make the port function as an output, the ‘output’ jumper must be installed: then the
data flows from the ‘Raspi’ point to the ‘I/O’ point. If both jumpers are installed, it won’t harm the
board, but the port won’t do anything sensible.

In both the input and output mode the LED will indicate what the logic level is on the ‘I/O’ pin. The
LED will be on when the level is high and it will be off when the level is low. There is a third option
for using this port: if neither the input nor output jumper is placed the I/O pin can be used as a simple
‘logic’ detector. The I/O pin can be connected to some other logic point (i.e. one that is either at OV or
3.3V) and use the LED to check if the connect point is seen as high or low.

Depending on the type of 74xx244 buffer chosen, the LED could behave randomly if the port is not
driven properly. In that case it may easily switch state, switching on or off with the smallest of
electronic changes, for example, when the board is simply touched.

There is a series resistor between the input buffer and the GPIO port. This is to protect the BCM2835
(the processor on the Raspberry Pi) in case the user programs the GPIO as output and also leaves the
‘input’ jumper in place. The BCM2835 input is a high impedance input and thus even a 10K series
resistor will not produce a noticeable change in behaviour when it is used as input.

Push buttons
The Gertboard has three push buttons; these are connected to ports 1, 2, and 3. Thus the first three I/O
ports look like this:

RaspiO (!)
input |: 74xx244 :|output
1k 1k-10k ? Ol/0
o F¥ Y

Fig. 9: Circuit diagram showing one of the three
push buttons I/Os. There is a circuit like this for
ports 1 to 3.

In order to use a push button, the ‘input’ jumper must not be installed, even if the intention is to use
this as an input to the Raspberry Pi. If it is installed, the output of the lower buffer prevents the
pushbutton from working properly. To make clear what state each button is in, the output jumper can
be installed, and then the LED will now show the button state (LED on means button up, LED off
means button down). To use the push buttons, a pull-up must be set on the Raspberry Pi GPIO pins
used (described below, page 16) so that they are read as high (logical 1) when the buttons are not
pressed.

Locating the relevant sections of the Gertboard

In the building blocks location diagram on page 7, the components implementing the buffered I/O are
outlined in red. The ICs containing the buffers are U3, U4, and U5 near the centre of the board. The
LEDs (the round translucent red plastic devices) are labelled D1 to D12; D1 is driven by port 1, D2 by
port 2, etc. The pushbutton switches (the silver rectangular devices with circular depressions in the
middle) are labelled S1 to S3; S1 is connected to port 1 and so on. The long thin yellow components
with multiple pins, are resistor arrays.

The pins corresponding to ‘Raspi’ in the circuit diagrams above are B1 to B12 on the J3 header above
the words ‘Raspberry Pi’ on the board (B1 to B3 correspond to the ‘Raspi’ points on the second
circuit diagram with the pushbutton, and B4 to B12 correspond to the ‘Raspi’ points on the first
circuit diagram). They are called ‘Raspi’ because these are the ones that should be connected to the
pins in header J2, which are directly connected to the pins in J1, and which are then finally connected
via the ribbon cable to the Raspberry Pi. The pins corresponding to the ‘I/O’ point on the right of the
circuit diagrams above are BUF1 to BUF12 in the (unlabeled) single row header at the top of the
Gertboard.

On the Gertboard schematic, I/O buffers are on page A-2. The buffer chips U3, U4, and U5 are clearly
labelled. It should be apparent that ports 1 to 4 are handled by chip U3, ports 5 to 8 by chip U4, and
ports 9 to 12 by chip US. The ‘Raspi’ points in the circuit diagrams above are shown as the signals
BUF _1 to BUF_12 on the left side of the page, and the ‘I/O’ points are BUF1 to BUF12 to the right of
the buffer chips. The input jumper locations are the blue rectangles labelled P1, P3, P5, P7, etc to the
left of the buffer chips, and the output jumper locations are the blue rectangles labelled P2, P4, P6, P8,
etc, to the right of the buffer chips. The pushbutton switches S1, S2, and S3 are shown separately, on
the right side of the page near the bottom.

The buffered I/O ports can be used with (almost) any of the GPIO pins; they just have to be connected
up using the straps. So for example, if you want to use port 1 with GPIO17 a strap is placed between
the B1 pin in J3 and the GP17 pin in J2. Beware that the push buttons cannot be used with GPIO0 or
GPIO1 (GPO and GP1 in header J2 on the board) as those two pins have a 1800€2 pull-up resistor on
the Raspberry Pi. When the button is pressed the voltage on the input will be

100040

. X =
33V 10000 + 18004

1.2V

This is not an I/O voltage which can be reliably seen as low.

The output and input jumper locations are above and below the U3, U4, and U5 buffer chips. The
‘input’ jumpers need to be placed on the headers below the chips (shown on the board with the ‘in’
text; they are separated from the chip they go with by a yellow resistor array), and the ‘output’
jumpers need to be placed on the headers above the chips (with the ‘out’ text). If viewed closely (it is
clearer on the bare board), it is possible to see that each row of 8 header pins above and below the
buffer chips is divided up into 4 pairs of pins. The pairs on U3 are labelled B1 to B4, the ones on U4
are B5 to B8, and the ones on US are B9 to B12. The B1 pins are for port 1, B2 for port 2, etc.

To use port n as an input (but not when using the pushbutton, if n is 1, 2, or 3), a jumper is installed
over the pair of pins in Bz in the row marked ‘in’ (below the appropriate buffer chip). To use port n as
an output, a jumper is installed over the pair of pins in Bz in the row marked ‘out’ (above the
appropriate buffer chip).

Fig. 10: Example of port configuration where ports 1
to 3 are set to be outputs and ports 10 and 11 are set
to be inputs.

As a concrete example, in the picture above, ports 1, 2, and 3 are configured for output (because of the
jumpers across B1, B2, and B3 on the ‘out’ side of chip U3). Ports 10 and 11 are configured for input
(because of the jumpers across B10 and B11 on the ‘in’ side of US5).

In the test programs, the required connections are printed out before starting the tests. The input and
output jumpers are referred to in the following way: U3-out-B1 means that there is a jumper across
the B1 pins on the ‘out’ side of the U3 buffer chip. So the 5 jumpers in the picture above would be
referred to as U3-out-B1, U3-out-B2, U3-out-B3, U5-in-B10, and U5-in-B11.

Testing the pushbuttons

The test program for the pushbutton switches is called buttons. To run this test, the Gertboard must
be set up as in the image below. There are straps connecting pins B1, B2, and B3 in header J3 to pins
GP25, GP24, and GP23 in header J2 (respectively). Thus GPIO25 will read the leftmost pushbutton,
GPIO24 will read the middle one, and GPIO23 will read the rightmost pushbutton. The jumpers on
the ‘out’ area of U3 (U3-out-B1, U3-out-B2, U3-out-B3) are optional: if they are installed, the
leftmost 3 LEDs will light up to indicate the state of the switches.

Raspber: ;™7
[/0 extension
11 March 2012

s

Fig. 11: Whilst the image above is clear, it isn’t very good at showing exactly how the straps are
connected, and between which pins on the board.

T 2 g e e e g EE = B £
WV RlRLRLBLARLRLRLBLRLELBLBL L 2 2 2
@-|§|ooooooooooooooooooooooolmm, Py Py
"@eee® "@eeee @e00® .
GNDFI Fuse max. 4A
0 2.8 i @ @ (g) (Q) (g) (g) (g) (Q) (g) (g) (g) (Q) (g) (e0000|”
ADO '|§§|czos1| | s3 Eae 5o N [j
Bﬂ, 20006 Sﬁ \ 0000000000 30\1,1
Egi.. ¥ , @000000® "
RN7
e @Impt o O B20ut B " eecjococe N
o o/le0ee - -loooooor - € GND@ scjocece o
reil@ @ D ©0cccccceo NN e} selsceve o
PBO|® @ uto n_mn ontni T
08 Ssee 5p |cwlii| o
rosle @ [MEky o @ Hoo0000000 0000000000 o
ms@o| MO o [0 r@0000000 s | :
PD4|® @ Eii o 0x [Nomemeomeo
PD3|® ® 123 @ ® |Ji71| B B2in B3 B4 Rz'...'... L
P2l @ °® ® 0000000 o 3
oo M EEe |0 000000000HOEOE O
rooj@ @ 2 om/'® e gocy N _B0jpbn ¢
pcsl@ @ Fcriigl oW |m) e MEEAZ 35 EMe
@ @ci5 Ci6 ::;’.::;'g'g 3

E‘g"‘j. o R L]

3 20| |® Raspberry Pi NNN%;;;;;;;:::?*:D |§:|R1 m

£2z0 ® |/0 extension %ggg%%%%%%%%%%%%%

ggé. o 11 March 2012 00000000

mol® - M [ee3vs |oooooooo o 5V Vx

Fig. 12: This type of diagram is much more effective at showing how straps connect pins
together on the board, so from now onwards, we will use these type of diagrams to show wiring
arrangements.

In the diagram, black circles show which pins are being connected, and black lines between two pins
indicate that jumpers (if they are adjacent) or straps (if they are further apart) are used to connect
them.

The code specific to the buttons testis buttons.c. In the main routine, the connections
required for this test are firstly printed to the terminal (a text description of the wiring diagram above).
When the user verifies that the connections are correct, setup_io is called (described on page 10)
to get everything ready.

setup_gpio is then called, which gets GPIO pins 1 to 3 ready to be used as pushbutton inputs. It
does this by first using the macro INP_GPIO (n) (where n is the GPIO pin number) to select these 3
pins for input.

Then pins are required to be pulled high: the buttons work by dropping the voltage down to 0V when
the button is pressed, so it needs to be high when the button is not pressed. This is done by setting
GPIO_PULL to 2, the code for pull-up. Should it ever be required, the code for pull-down is 1. The
code for no pull is 0; this will allows this pin to be used for output after it has been used as a
pushbutton input. To apply this code to the desired pins, set GPIO_PULLCCLKO = 0X03800000.
This hexadecimal number has bits 23, 24, and 25 set to 1 and all the rest set to 0. This means that the
pull code is applied to GPIO pins 23, 24, and 25. A short_wait allows time for this to take effect,
and then GPIO_PULL and GPIO_PULLCLKO are set back to 0.

Back in the main routine, a loop is entered in which the button states are read (using macro
GPIO_INO), grabbing bits 23, 24, and 25 using a shift and mask logical operations, and, if the button
state is different from before, it is printed out in binary: up (high) is printed as ‘1’ and down (low) is
printed as ‘0’. This loop executes until a sufficient number of button state changes have occurred.

After the loop, unpull _pins is called, which undoes the pull-up on the pins, then call
restore_ioin gb_common. c to clean up.

Testing the LEDs

The test program for the LEDs is called 1eds. To set up the Gertboard to run this test, see the wiring
diagram below. Every I/O port is connected up as an output, so all the ‘out’ jumpers (those above the
buffer chips) are installed. Straps are used to connect the following (where all the ‘GP’ pins are in
header J2 and all the ‘B’ pins are in header J3): GP25 to B1, GP24 to B2, GP23 to B3, GP22 to B4,
GP21 to B5, GP18 to B6, GP17 to B7, GP11 to B8, GP10 to B9, GP9 to B10, GP8 to B11, and GP7
to B12. In other words, the leftmost 12 ‘GP’ pins are connected to the ‘B’ pins, except that GP14 and
GP15 are missed out: they are already set to UART mode by Linux, so it’s best if they are not
touched.

If there aren’t enough jumpers or straps to wire these connections all up at once, don’t worry. Just
wire up as many as possible, and run the test. Once it’s finished the straps/jumpers can be moved and
the test can be run again. Nothing bad will happen if a pin is written to that has nothing connected to
it.

3V3 %J.éJ.éJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.
@e | I_Ioooooooooooooooooooooool | @ E PS
"Feeee “@eeee @eeeeos® °

oD 0\ (6 (6 (0 &\ &\ &\ (@) (& (&) OV’ use max. #A

28 oo()()()()()()()()()()()Z)I_I
mie o] lee
o0 @I g5 ISﬂII ISJWII Img“—

0000000000
DAooliJ-”.... XX
Egi:zl‘looo”‘"’ Sreeess “Necccecceee see u
530 Olhk g 0 0 = 06000000 S ee e, e Soesie e o
PB1|® @ " 0000000000 I:[] . ::::::: :
el s see i5p [E /00000000 [t olc ot o
s Hlks g 19 HOOOOOOOOG ©000000000 go0c0ce ©
ps@e 1l o [0 m@E0O0000® s ::::::::
rioe @ o [®x _
PD3@ @ |@@l2:® .’@_JE‘: B2 in B3 R;.'.'.... oolooooe ©
PD2|® ® ° ° 0000000
|i| J4 ¢l

PDI|@ @ (Wl @)
rooj@ @ LB jmym| IR NN NNNT .‘_-_‘_ 3V3
pcsj@ @ "criigl omm)m SSIin s
PC4® @ @ @ci5 Cl6
PC3|® @ 20| |@ L1 W7 c7
pc2l@ @ 3220 ® Raspberry Pi - 9222 EER g8
PC1 olg £250 [I1/10Mextehn:;l(gj){w2 ggggggggggg%%%%%% a BB
PCOOIM]- g 2350 |® arc ecocccococooonm NN

em mel® - 1" [90]3vs ooooooooooooli 5V Vx

Fig. 13: The wiring diagram necessary to run the Gertboard LED test program, leds

The test code in 1eds. c first calls setup_1io to get everything ready. Then setup_gpio is
called, which prepares 12 GPIO pins to be used as outputs (as all 12 I/O ports will require
controlling). All of the GPIO signals except GPIO 0, 1, 4, 14, and 15 are used. To set them up for
output, first call INP_GPIO (n) (where n is the GPIO pin number) for each of the 12 pins to activate
them. This also sets them up for input, so then call OUT_GPIO (n) afterwards for each of the 12 pins
to put them in output mode.

LEDs are switched on using the macro GPIO_SETO: the value assigned to GPTIO_SETO will set
GPIO pin 7 to high if bit n is set in that value. When a GPIO pin is set high, the I/O port connected to
that pin goes high, and the LED for that port turns on. Thus, the line of code “GPIO_SETO0 =
0x180; ” will set GPIO pins 7 and 8 high (since bits 7 and 8 are set in the hexadecimal number
0x180). Given the wiring setup above, ports 11 and 12 will go high (because these are the ports
connected to GP7 and GP8), and thus the rightmost two LEDs will turn on.

To turn LEDs off, use macro GPTO_CLRO. This works in a similar way to GPTIO_SETO, but here the
bits that are high in the value assigned to GPTO_CLRO specify which GPIO ports will be set low (and
hence which ports will be set low, and which LEDs will turn off). So for example, given the wiring
above, the command “GPIO_CLRO = 0x100;” will set GPIOS pin low, and thus turn off the LED
for port 11, which is the port connected to GPS8. (In 1eds. c the LEDs are always all turned off
together, but they don’t have to be used this way.)

The test program flashes the LEDs in three patterns. The patterns are specified by a collection of
global arrays given values using an initializer. The number in each of the arrays says which LEDs will

be turned on at that point in the pattern — so, pattern value is submitted sequentially to produce the
changing pattern, switching all the LEDs off between successive pattern values. Each pattern is run
through twice. The first pattern lights the LEDs one at a time in sequence, left to right. The second
pattern does the same but when it reaches the rightmost LED, it then reverses direction and lights
them in sequence right to left. The third pattern starts at the left end and at each step switches on one
more LED until they are all lit up, then starting at the left it switches them off one by one until they
are all off.

Finally, the test program switches off all the LEDs and then finally calls restore_1io to clean up all
the LEDs to a predictable final state.

Testing I/0

Our two examples so far have only used the ports to access the pushbuttons and LEDs. The next
example, called butled (for BUTton LED) will show one of the ports serving just as an input port.
The idea is that one port (along with its button) is used to generate a signal, and software then sends
that signal to another port which it is used as just an input. We read both ports in and print them on the
screen.

c 8o e e pe gt = 8 @+
WV RLlRALERLRALALALALRLI LI LILBL L & € £
|oo|;|;|ooooooooo ooooooooooooollﬁ| e 0 0 E,w‘ Py
@eeeo @epee L @eee®s -
GND % A\ 2 2 % Ji1 F1 Fuse max. 4A
e @QOOOAOOOO D m i "
o/ \o/ o/ o) \0/ \o)\\e/ \0/ 0/ (@) 0/ \0 Y XXX
AD1l@ @ o0 c8 B B6 Oulp B8 [
o0 @I g IsﬂII Iss =iS[0 H[o NIE O/N 6/ m | RWR
DA1
o opimeeee 3 sesccessee ST Ssssee =
PB5|@ @ If @o0o00000 }’ RO X0, | M|RPWR
PB4l® @ 3 ”NT U4 0000000 ULZ E.
Pasoo=4.°. 09 H'Ns 5| [00/0 0000 N]em
2@ @ 02900 mmo u| GNDI; oo/0e00e o (o0
i 0000000000 EU ecoecoce O [(o°m
PBO|® ® uto i mooutsn i @e0eeee O (e
08 Seee i5p comje me HEOm 6] lgeleeace o [o3m
roslo @ MHkw o e H000000000 0000000000 000000 o (o0
rsee|tle] o (0 r@eoeoeeee® u5}> oooeooe o [om
PD4|® @ o 0y momememeo oc0ocece © °
PD3l®@ ® .123. o\ L5 mine R;......... ooooooe ©]
Ao e o |o 3 @eececccee
PD1|® @ el |ole._[mle coo[EememeNe .meoees
ool [l mlel om™ s SEg B Wi ST ®
Eﬁi:: : :%% Megge gz, éééézzﬁ |
PC3|® ® zsZ@ ° omme000E 2, Eaw 7 _c1
‘es| 3ize| |0 Ruspberry i [FCOWESSoeocO oSO Ty | o Eale
PCl|@ @ £250 ® |/0 extension S5 53855555555 358658 " BE
PCo|@[]- 2329l o 11 March 2012 secccsccccoea N o
aem me®L- " [e0]3vs 0000000000000 5V Vx IOl

Fig. 14: The wiring diagram for test program butled which detects a button press, and then
display that button state on the screen. This is to test all the I/O on the Gertboard.

The wiring for this test is shown above. Pin GPIO23 controls I/O port 3, and GPIO22 controls I/O
port 6, so GP23 in header J2 is connected to pin B3 in header J3, and GP22 is connected to B6. Now,
for the interesting part. The pushbutton on port 3 is going to be used here, but the LED for port 3
should not be used, so therefore the output jumper for port 3 is not installed (which would be placed at
U3-out-B3).

Looking at the schematic on page A-2, it is clear that the output buffer for port 3 goes to pin 14 of
buffer chip U3. This is connected to the U3-out-B3 header pin just above pin 14 on the chip (it is pin
1 of U3-out-B3; this is clear from the schematic and from the fact that this pin has a square pad on the
bare circuit board), so that pin is connected to the BUF6 pin at the top of the board. This allows the
switch to generate a signal which is then sent to port 6. A jumper is installed across U4-in-B6 to allow
that signal to be input from the board. The value of the switch from port 3 is also read in, and these
two should be the same (most of the time).

In butled.c weuse INP_GPIO to set GPIO22 and GPIO23 to input and GPIO_PULL and
GPIO_PULLCLKO to set the pull-up on GPIO23. This is described in more detail on page 16, in the
buttons test. Then the GPIO values are repeatedly read in, and the binary values of GPIO22 and
GPIO23 are printed out, if they have changed since the last cycle. So if ‘01 is displayed on the
monitor, it can be deduced that GPIO23 is low and GPIO22 is high. (Note that the LED for port 6,
labelled D6, should be off when switch 3 is pressed and on when switch 3 is up.)

Now, if the values for GPI022 and GP1023 are always the same, ‘00’ and ‘11’ will only ever be
printed out. But if the test is started with button 3 up (so ‘11’ is displayed), and then the button is
pushed down, occasionally ‘01’ might be seen, followed very quickly by ‘00’. The reason for this
differs between the Python and C implementations. In the C version, both values are read at the same
time, and the signal from the push button (which is connected to GPIO23) takes a small amount of
time to propagate through the buffers to get to GP1022.

It may even be possible to get one reading in after GPIO23 has changed, but insufficient time has
passed for GPIO22 to change state and follow it! In the Python code, the read of GPIO22 occurs
before the read of GPIO23 (the button). Thus if the button is pressed or released between these two
reads, the new value will be read in for the button (GPIO23), but the new value of the other input
(GPIO22) won’t change until the next time through the while loop.

Open Collector Driver

The Gertboard uses six ports of a ULN2803a to provide open collector drivers. These are used to turn
off and on devices, especially those that need a different voltage or higher current than that available
on the Gertboard and are powered by an external power supply. The ULN2803a can withstand up to
50V and drive 500mA on each of its ports. Each driver has an integrated protection diode (the

r@common
QOUT
RaspiO—
g A

—

i<

uppermost diode in the circuit diagram below).

Fig. 15: Circuit diagram of each open collector driver.

The ‘common’ pin is, as the name states, common for all open collector drivers. It is not connected to
any other point on the Gertboard. As with all devices the control for the open collector drivers (the
‘Raspi’ point) can also be connected to the ATmega controller to, for example, drive relays or motors.

The open collector drivers are in the schematics on page A-3.

On the Gertboard building block diagram on page 7, the area containing the components for the open
collector drivers are outlined in yellow. The pins corresponding to ‘Raspi’ in the diagram above are
RLY1 to RLY6 pins in the J4 header; the pins corresponding to ‘common’ are the ones marked
RPWR in the headers on the right edge of the board; and the pins corresponding to ‘OUT’ are the
RLY1 to RLY6 pins in the headers J12 to J17. How these are then used is demonstrated by the test
wiring and code examples.

Testing the open collector drivers

The program ocol (for open collector) allows the functional testing of the open collector drivers. A
simple mechanism was required to switch the driver on and off, so we created a little circuit (see
diagram below) consisting of two large LEDs and a resistor in series. Once connected, the forward
voltage across each of these LEDs is a little above 3V, so we used a 9V battery as a power supply, and
calculated a series resistance of around about 90€ to set a suitable current flow through the LEDs.

Since this small test circuit will not be used again, it can simply be hand soldered together off-board.
Remember that LEDs are diodes, and have to be connected the right way round. The small ‘flat’ in the
LED moulding denotes the ‘cathode’ or negative pin. If you think of the LED symbol in the circuit
diagram below as an arrow, it is pointing in the direction of the current flow, from + to -, or from
anode to cathode.

To turn the circuit off and on using the open collector driver (say you want to use driver 1), first check
that it works with the power supply described above. Then, leave the positive side of your circuit
attached to the positive terminal of the power supply, but in addition connect it to one of the RPWR
pins in the headers on the right edge of the board (they are all connected together). Disconnect the
ground side of the circuit from the power supply and connect it instead to RLY1 in header J12 on the
right of the board. Attach the ground terminal of the power supply to any GND or L pin on the board.
Now, we need a signal to control the driver. For the ocol test we are using GPIO4 to control the
open collector (you could of course use any logic signal), so connect GP4 in header J2 to RLY1 in J4.
(To test a different driver, say n, with the ocol test, connect the ground side of the circuit up to
RLY# in the headers on the right of the board and connect GP4 in header J2 to RLY# in J4.)

Now, when RLY1 in J4 is set low, the circuit doesn’t receive any power and thus is off. When RLY1
in J4 goes high, the open collector driver uses transistors to connect the ‘ground’ side of the circuit to
the ground on the board, and since this is connected to the ground terminal on the power supply, the
power supply ends up powering the circuit: it is just turned off and on by the open collector driver.

- N ™ ~ b © ~ m = 2 5 ¥
[y [Ty [[[[[T [[y [[y [y
WV 2lRlElaAlalalalalaldlaladl L g
00 H00000000000000000000000 mm, Y o
19

R"' ""2@_0) M oo oo g

g ‘.
ool __mil sﬂI:ssII: Iimilﬂ[mq R
680000 A , 80eececcee MEI i !
P @eeeeeeo :l Sece ,;,* ¥
PO OISO OO AV ‘He00000000 —
re3/@ @) B @eeeeeee \ A
Fio @7 2000 e Y momememen ™" & -
i oooooooooo“ XX
moe Hewe” W |.EmesekEsEd '
rslee Ml o o NOOOO0000O 0000000000 /
PD5|® ©| 1-[H] o o ME0O00O00O s seee
® xi |I1 II I! I’

E%:: 23 @ o@\ L "H mnm B 1000000000 DX .
mn2le e o o ME0000000 your circuit
wijo o M EEe ® X goes here
PDO(® @ !%‘I LI =] - your power
PC5|® @ Cl7R24 @ 3G source
”:g;: : >°3.:) goes here
@@ 3 ce) IIIIIXLIIY) coodadk :I m
PC1|® @ £220 ® /0 extension B8 885555555555 5888
PCO|@|M|- g 235O ® 11 March 2012 0000000000

oem mel®L- 1 (903 |oooooooooo o 5VVx

U8

Fig.16: Wiring diagram showing how to connect Gertboard to test the open collector drivers. It
also shows the small test power supply made up of two LEDs in series, a 90 Q resistor and a 9V
battery.

You may wonder why you need to connect the positive terminal of the power supply to the open
collector driver (via the RPWR pin). The reason for this is that if the circuit happens to contain an
component that has electrical inductance, for example a motor or a relay, when the power is turned off
this inductance causes the voltage on RLY# pin to quickly rise to a higher voltage than the positive
terminal of the power supply, dropping quickly afterwards. The chip itself has an internal diode
connecting the RLY#n pin to the RPWR. This allows current to flow to the top (positive side) of your
circuit, allowing the energy to dissipate, and preventing damage.

The ocol test is very simple. First, it prints out the connections required on the board (and with your
external circuit and power supply), and then it calls setup_1io to get the GPIO interface ready to use
and setup_gpio to set pin GPIO4 to be used as an output (using the commands INP_GPIO (4) ;
OUT_GPIO(4) ; asdescribed on page 11). Then in it uses GPIO_SETO and GPIO_CLRO
(described on page 17) to set GPIO4 high then low 10 times. Note: the test asks which driver should
be tested, but it only uses this information to print out the connections that need to be made.
Otherwise it ignores your response.

Motor Controller
The Gertboard has a position for a L6203 (Miniwatt package) motor controller. The motor controller
is for brushed DC motors.

The controller has two input pins, A and B (labelled MOTA and MOTB on the board). The pins can
be driven high or low, and the motor responds according to the table below. The speed of the motor
can be controlled by applying a pulse-width-modulated (PWM) signal to either the A or B pin.

A | B Motor action
0 |0 no movement
0 1 rotate one way
1 0 rotate opposite way from above
1 1 no movement

Table 3: Truth table showing the behaviour of the motor
controller under different logic combinations.

The motor controller IC has internal temperature protection. Current protection is provided by a fuse
on the Gertboard.

The motor controller is in the schematics on page A-4.

On the Gertboard building block diagram on page 7, the area containing the components for the motor
controller are outlined in purple. The motor controller and screw terminals are near the top of the
board, and there are two pins for the control signals in a small header just above GP4 and GP1 in
header J2. The MOTA and MOTB pins just above header J2 are the inputs to the motor controller —
these are digital signals (low and high). The screw terminals at the top of the board labelled MOTA
and MOTB are the oufputs of the motor controller: they actually provide the power to the motor. The
motor will probably need more power (a higher voltage or current) than that provided by the
Gertboard. The screw terminals at the top labelled MOT+ and L allow the connection of an external
power supply to provide this: the motor controller directs this power to the MOTA and MOTB screw
terminals, modulating it according to the MOTA and MOTB inputs near J2.

If you just want to turn the motor off and on, in either direction, this is achieved by simply choosing
two of the GPIO pins and installing straps between them to the MOTA and MOTB motor controller
inputs. Then, to control the motor, the pins are set high or low per the table 3 above. To control the
speed of the motor however, pulse width modulation (PWM) is required. This is a device that outputs
a square wave that flips back and forth from on to off very rapidly, as in the diagram below:

1

0

Fig. 17: An example of a PWM output. In this example the output is
neither on nor off all the time. In fact, here it is on for 50% of the
time, and is therefore said to have a duty cycle of 50%.

With a PWM, you can control the amount of time the output is high vs. when it is low. This is called
the duty cycle and is expressed as a percentage. The diagram above shows a 50% duty cycle; the one
below is 25%.

1

0

Fig. 18: In this PWM example, the duty cycle is 25%.

There is a PWM in the BCM2835 (the Raspberry Pi processor), and it’s output can be accessed via
GPIO18 (it is alternate function 5). If this is connected to one of the motor controller inputs (MOTA
has been used in our motor test), and set the other motor controller input (MOTB in our test) to a
steady high or low, the speed and direction of the motor can be controlled.

1 1
MOTA MOTB

0 0

Fig. 19: The motor direction is set by MOTB. Whilst MOTA has a duty cycle of 25 %, the motor
only receives power when MOTA and MOTB are different, thus it receives power for 75% of
the time.

For example, in the diagram above we are alternating between A low/B high and A high/B high (the
second and fourth lines of the table above). When A is low, the motor will receive power making it
turn one way; when A is high it will not receive power. The end result for the 25% duty cycle shown
here is that the motor will turn one way at roughly % speed.

1 1
MOTA MOTB
0

0

Fig. 20: In this example, the truth table predicts that the motor will run in the opposite direction
at around 25 % speed.

If on the other hand you set MOTB low, as in the diagram above, then when A is high the motor will
receive power making it turn in the other direction, and when A is low the motor will not receive
power. The result for the 25% duty cycle is that it will turn in the other direction at about % speed.

Testing the motor controller

The PWM is controlled by a memory map, like the GPIO and SPI bus. This memory map is part of
the setup_io function in gb_common. ¢, so that is whether the PWM is used or not. Further setup
code is found in, gb_pwm. ¢, with an associated header file gb_pwm. h. The function setup_pwn
in gb_pwmn. c sets the speed of the PWM clock, and sets the maximum value of the PWM to 1024:
this is the value at which the duty cycle of the PWM will be 100%. It also makes sure that the PWM is
off. The two routines set_pwmO and force_pwm0 set the value that controls the duty cycle for the
PWM. set_pwmO sets the value (first checking that it is between 0 and 1024), but as there are only
certain points in the PWM cycle where a new value is picked up, if a second value is written again
quickly the first will have no effect. The force_pwmO routine takes two arguments, a new value and
a new mode. It disables the PWM, then sets the value, then re-enables it with the given mode setting,

with delays in strategic places to allow the new values to be picked up. The pwm_of f routine simply
disables the PWM.

The test program for the motor controller is called motor. To set up Gertboard for this, connect
GP17 in J2 to the MOTB pin (the MOTB pin in the 2-pin header above GP1 and GP4, not the one at
the top of the board), and GP18 to MOTA in that little header. The motor leads need to be connected
to the MOTA and MOTB screw terminals at the top of the board, and the power supply for the motor
needs to be connected to the MOT+ and L screw terminals. This is shown below.

your power i +
source —
goes here PT-
c 82 e gt e & EE = =
WV BRLlRLRL BlBLlBLBRLB LB LB LBLBL L 2 g 2
00 H00000000000000000000000 ,,; . |l@ Py
"@eeee @eeee @eeeos(s M .
GND g o D.J % 'ﬁ % % % % w %‘mz. F1i Fuse max. 4A
Am% (!) (;) (!) (!) (!) (!) (!) (!) (%) () ()ou) 'YY X X AU
10 OlN)- g0l TI Tssl TEEEE‘“ Faln
DAI[® @ sﬂ 3 XYY Y Y Y Y Y Y i
nss erees g eess
Egi:: M T Y Y XXX XXX (CXJX0 iz
e e @ [0 5o HiN 61 6 @eeseeeel,)q Ssiesle o
oo = 5[W[o [N o ¢
ng.. 0000000000 I:p= N :
RE RID OUtR R 0000000
hilee HO®® ”3t |c10I§EI eeecooe ©
oo My g 9o HNOOOOOOO0G 0000000000 goeoeoe ©
pnsoo1- of (0 ru@ecce000® ust |::::::: .
PD4|® @ o ® X
PD3{@ ® ;e (@ |“E7'| H000000000 000000 ©
PD2|@ @ o |o 3
PDI|® ® Eﬁilo ® E’loooooooooool
PDO|® @ R“c'%n%. ol R B
PC5® @ o |om|m
PC4® ® @ @15 C6
PC3|® ® 53=0@ .
Pc2(® ® g-c@| |®@ Raspberry Pi
PC1|® @ g2s0 ® /0 extension S58582585555% 5
Pco%i- pg 325@ ® 11 March 2012
GNTD@--.._G'E‘J. [@e@]3v3

Fig. 20: The wiring diagram for the test program motor.

The code for the motor program is in motor . c. Inthe main routine, first the connections that must
be made on the board to run this program are printed out, then call setup_io to get the GPIO
interface ready for use. setup_gpio is then called to set GPIO18 up for use as the PWM output and
GPIO17 up for normal output. For the latter, both INP_GPIO and OUT_GPIO are used, see page 11
for more info. To set up GPIO18, first use INP_GPIO (18) to activate the pin. One of the alternate
functions for GPIO18 is to act as the output for the PWM; this is alternative 5. Thus use the macro
SET_GPIO_ALT (18, 5) to select this alternate use of the pin. (See table Table 6-31 from the
BCM2835 datasheet, or the online version at http://elinux.org/RPi BCM?2835 GPIOs, for more
details about alternative functions for the GPIO pins. A summary of the alternate function of GPIO
pins used on the Gertboard, see the table on page 9.)

We set the output of GPIO17 low (to make sure that the motor doesn’t turn) and then initialize the
PWM by calling setup_pwm. We enable the PWM by setting the mode to PWMO__ENABLE using
force_pwm0. Since GPIO17 (motor controller B input) is set low, when the duty cycle on the PWM
(motor controller A input) is high enough, the motor will turn the ‘opposite way’ as described in the
motor table on page 22.

A loop now starts where the PWM is started, first with a very low duty cycle (because the value
passed to set_pwmO is low), then gradually increasing this to the maximum (which is set to 0x400 —
1024 — in setup_pwm). Then the value sent to the PWM is decreased to slow the motor down. Then
GPIO17 is set high, so that the motor will get power on the low phase of the PWM signal. The PWM
is re-enabled with the mode PWMO_ENABLE | PWMO_REVPOLAR. The reverse polarization flag flips
the PWM signal, so that a low value sent to the PWM results in a signal that is high most of the time
(rather than low most of the time). That way the same code can be used to slowly ramp up the speed
of the motor (but in the ‘one way’ direction as in the table on page 22), then slow it down again.
Finally the PWM is switched off, and the GPIO interface is closed down.

Digital to Analogue and Analogue to Digital Converters

In the Gertboard building blocks diagram on page 7, the components implementing the converters are
outlined in orange. Both the analogue converter (D/A) and analogue to digital converter (A/D) are 8-
pin chips from Microchip. The D/A is U6 (above) and the A/D is U10 (below). Each supports 2
channels.

Both use the SPI bus to communicate with the Raspberry Pi. The SPI pins on the two chips are
connected to the pins labelled SCLK, MOSI, MISO, CSnA, and CSnB in the header just above J2 on
the board (thus in the building blocks diagram, these pins are also outlined in orange). SCLK is the
clock, MOSI is the output from the RPi, and MISO is the input to the RPi. CSnA is the chip select for
the A/D, and CSnB is the chip select signal for the D/A (the ‘n’ in the signal name means that the
signal is ‘negative’, thus the chip is only selected when the pin is low). Both A/D and D/A chips have
a 10K pull-up resistor on their chip-select pins, so the devices will not be accessed if the chips select
pins are not connected.

The SPI pins are conveniently located just above GP7 to GP11 in header J2, because one of the
alternate functions of these pins is to drive the SPI signals. For example, the “ALT0” (alternative 0)
function of GPIO9 is SPI0_MISO, which is why the pin labelled MISO is just about the pin labelled
GP9. Thus to use the A/D and D/A, simply put jumpers connecting pins GP7 to GP11 to the SPI pins
directly about them (although technically you only need CSnA for the A/D and CSnB for the D/A).

In the schematics, the D/A and A/D converts are on page A-6.

Digital to analogue converter

The Gertboard uses a MCP48xx digital to analogue converter (D/A) from Microchip. The device
comes in three different types: 8, 10 or 12 bits. It is likely that MCP4802, the 8 bit version, will be
used, but if higher resolutions are needed, it can be replaced with the MCP4812 (10 bits) or MCP4822
(12 bits). These chips are all pin-compatible and are written to in the same way. In particular, the
routine that writes to the D/A assumes that writes are in 12 bits, so it is important that the value is
selected appropriately (details are below in the “Testing the D/A and A/D” section). The maximum
output voltage of the D/A — the output voltage when you send an input of all 1s —is 2.04V.

The analogue outputs of the two channels go to pins labelled DAO (for channel 0) and DA1 (for
channel 1) in the J29 header. Just next to these pins are ground pins (GND) to provide a reference.

Analogue to Digital converter

The Gertboard uses a MCP3002 10-bit analogue to digital converter from Microchip. It supports 2
channels with a sampling rate of ~72k samples per second (sps). The maximum value (1023) is
returned when the input voltage is 3.3V.

The analogue inputs for these two channels are ADO (for channel 0) and AD1 (for channel 1) in the
J28 header. Just next to these pins are ground pins (GND) to provide a reference.

Testing the D/A and A/D

Since the D/A and A/D converters both use the SPI bus, the common SPI bus code has been placed
into a separate file, gb_spi . c. There is also an associated header file, gb_spi . h, which contains
many macros and constants needed for interacting with the SPI bus, as well as the declarations for the
functions in gb_ spi . c. These functions are setup_spi, read_adc, and write_dac.
setup_spi sets the clock speed for the bus and clears status bits. read_adc takes an argument
specifying the channel (should be 0 or 1) and returns an integer with the value read from the A/D
converter. The value returned will be between 0 and 1023 (i.e. only the least significant 10 bits are
set), with O returned when the input pin for that channel is OV and 1023 returned for 3.3V.

The write_dac routine takes two arguments, a channel number (0 or 1) and a value to write. The
value written requires some explanation. The MCP48xx family of digital to analogue converters all
accept a 12 bit value. The MCP4822 uses all the bits; the MCP4812 ignores the last two; and the
MCP4802 (which is probably the one you are using) ignores the last four. Since you could use any of
those chips on the Gertboard, write_dac is written in so that it will work with all three, so it simply
sends to the D/A the value it was given. If Gertboard is fitted with the MCP4802, it can only handle
values between 0 and 255, but these must be in bits 4 through 11 (assuming the least significant bit is
bit 0) of the bit string it is sent. Thus if the desired number to be sent to the D/A is between 0 and 255,
it must be multiplied by 16 (which effectively shifts the information 4 bits to the left) before sending
this value to write_dac.

The value on the output pin, Vout, is given by the following formula (assuming the 8-bit MCP4802):

in

TE X 2.048V

Vout =

To test the D/A, a multimeter is required. The test program for this is dtoa. To set up Gertboard for
this test, jumpers are placed on the pins GP11, GP10, GP9, and GP7 connecting them to the SPI bus
pins above them. Attach the multimeter as follows: the black lead needs to be connected to ground.
You can use any of the pins marked with L or GND for this. The red lead needs to be connected to
DADO (to test the D/A channel O which is shown below) or DA1 (for channel 1). Switch the
multimeter on, and set it to measure voltages from 0 to around 5V.

— + 1 ® 1= o < @ +
)<\ w 5.5,8, 5.8, 8,5 8. 8. 5.5,5, . § §
::- ooooooooooooooooooooooom‘m, ° o
& 6 o0 PR o 5 m YT ;
F1 Fuse max.
J28¢ .) (o) (o) (o) (o) (o) (o)((o) (o) (o) ér)l_l o0000
.. 20 ssI EE'%F‘ BE mEk:
29.... XYYYYYYYY) SEI““".
....... k oe0oc0o0e
PB4® ® us i X
wotiiese SasasEams Eeesesserc s SHS3SS ¢
rezlo @ 5[0 /o i o8 o ofg]
o D 000cccccce HoEoEON e sclsciece o
uto eejeceee
e b Heee ”’k C'OEEM oeoeceoe ©
rsjee| MlEln g 9 HOOOOOOOOS 0000000000 9000000 ©
rs@e|He] o (0 @C00000® us S
o0 o ([ox
:g;.. 423 @ [] J@h R;......... CO OO
PD2|@ ® o |o 006060069
miloel [NmETe |0 X0
oo e [mmel |om ™ 5 22 LA
Pes@ @ CTRZ@| |@|H||m| 5 538850 =m 2
PC4® @ ° ®ci5 Cib ALST5 5 T
= 0 FOOQ Q= =12
Pc3|® ® zs=0 o . Elnz c7
e 3-20 ® Raspberry Pi — CE .124 ’:‘@
PC1|® @ £2<0@ o IﬁOMext?]nszi(c)){l2 ggggggggggg%%%%% a
PCOJTJE. w 2350 |@ arc o00000000000 c4
o --jl._ﬁJ- [@®]3vs |oooooooooooo 5VVx ,-,t!lm

Fig. 21: The wiring diagram required to measure the output from the D to A converter fitted to
the Gertboard whilst running the test program dtoa.

The dtoa program first asks which channel to use and prints out the connections needed to make on
Gertboard to run the program. Then it calls setup_1io to get the GPIO ready to use, then calls
setup_gpio to choose which pins to use and how to use them. In setup_gpio, as usual
INP_GPIO (n) (where nis the pin number) is used to activate the pins. This also sets them up to be
used as 1nputs. They should however, be used as an SPI bus, which is one of the alternative functions
for these pins (it is alternate 0). Thus we use SET_GPIO_ALT (n, a) (where n is the pin number
and a is the alternate number, in this case 0) to select this alternate use of the pins. Then the program
sends different values to the D/A and asks for real verification, using the multimeter, that the D/A
converter is generating the correct output voltage.

The test program for the A/D is called atod. To run this test a voltage source on the analogue input is
required. This is most easily provided by a potentiometer (a variable resistor). The two ends of the
potentiometer are connected, one side to high (3.3V, which you can access from any pin labelled 3V3)
and the other to low (GND or 1), and the middle (wiper) part to ADO (for channel 0 as shown below)
or AD1 (for channel 1). To use the SPI bus jumpers should be installed on the pins GP11, GP10, GP9,
and GPS8 connecting them to the SPI bus pins above them.

N

I - ° = < m +
V3 mJ.mJ.m mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ- J' g S e
o rlooooooooooooooooooooooolm PP E P P
"@eeeo R"’Iozoo) m....%.)o . "
-~ GND o\ /0 ® F1 Fuse max
N Ama.u.o()(;)()(‘)()(‘) OO0 m Hasssy
" e WM IEEIlihlilll "
| 0000000000
O e {3 ool eleas
PBS XXX XXX,
4O OGO @ * Erecees looooooooo Soeeeee
PBS...4 B B2out B3 oolooooe H
rezje ollB 0 0 @ Eaonenmeme & cnn@ celecece o
Pi|® @ EI X XXXIXXXX) 5 selscece o
0 ou (XX
e Heo® ”sh |°1°|§ilm ooece0e ©
rosle @ EEky o @ H000000000 0000000000 goeceee ©
ms@e|me] o |0 rw@oeeeeee usl)_ |::::::: :
o0 o |ox
e e el |e IJENI H000000000 go00000 ©
Ploel — __o | OO XX XXX
PDI|@ @ Iiﬁilo ™
PDO(® @ R34c|§,%. [
PC5|@ @ °
Pcij@ @ o
PC3|® @ 2320 .
c@e 3ocel (e F/gspbff ry Pi Ju
PCl|@® @ gss0 ® extension
Pco%i e 2350 (@ 11 March 2012
o --QO_QJUB H [@e|3v3 5V Vx

Fig. 22: Wiring diagram showing how the Gertboard is connected to verify that the A/D
converter is working properly, using the test program atod.

The atod program first asks which channel should be used and prints out the connections required on
Gertboard to run the program. Then it calls setup_io to get the GPIO ready, then calls
setup_gpio to choose which pins will be used, and how they will be used. The setup_gpio
used in at od works the same way as the one in dtoa (except for activating GPIOS instead of
GPIO7).

Then atod repeatedly reads the 10 bit value from the A/D converter and prints out the value on the
terminal, both as an absolute number and as a bar graph (the value read is divided by 16, and the
quotient is represented as a string of ‘#” characters). One thing to be aware of is that even if the
potentiometer is not moved, exactly the same result may not appear on successive reads. With 10 bits
of accuracy, it is very sensitive, and even the smallest changes, such as house current running in
nearby wires, can affect the value read.

Even without a multimeter or a potentiometer, it is still possible to test the A/D and D/A by sending
the output of the D/A to the input of the A/D. The test that does this is called dad, for digital-
analogue-digital. To set the Gertboard up for this test, hook up all the SPI bus pins (connecting GP11
though GP7 with jumpers to the pins above them) and put a jumper between pins DA1 and ADO, as in
the diagram below.

T @2 e e 8 = e
WV RLRALERLRLlalalalalaladladlal L 2 2 2
0o Neoooe000000000000000000;,,;/g ¢ o i Py PY
"@eee® ™Eeeee @GS "
GND DI D2 D3 D 3 ‘ D D 1 ‘...‘.H Fuse max. 4A
! (’)(’)(’)(’)()()()()()()()Z) '
witefegle @ ele) e (o) le)e)le) o) lo)m [g5000)
o T I E [N NN oW O/E R mN WaT .
00,6000 Sﬂ 3 YYYYYYYYY) 30\1,1 - R
oImF o eeeoce0e N
rr:g?f::I—llooo“ e esees “"Neccececccee ooesese U o
PB}..=R4 C9 B B20out B3 B4 N5 ® (XXX ®
M eellceee [5[0 B[e N[o[& mmmm,, ccoooee o |o
Pei® @ 0000000000 ooooccee O |o
PBO|® @ uto U outp o0oo0oo000 © L=
niee HOO® C'Uliilw ocoeceee o |0
roslo e EHkw o[e H000000000 0000000000 0000006 o (o
rsl@0@|[lO o |0 r@0000000 u ::::::: : ®
PD4|® @ ([J o x g
PD3(® ® e |(e@Lw mnes H000000000 go0c000 © |0
oo — o lofo|®, w@eeeceee o LB
PDI|@ @ mmle| |0 |l|ooooooooooo||lolololo meeeee
rooj@ @ B oM N RIResR 2D P Mntn_ mioo o9 ohys
PCS@ @ T'CUR4@(| @|H||M| ST UME 53825 ;;;;;;
PCH® @ o [|ecsci 000005 2., iy
rloel 2iie e i #
PC2(@® @ 3220 Y Rospberry'Pl o _w,\m*__ooml*_ |§:|R1 424 |_|
PCl|® @ £2=e ® /0 extension 585 5E5555555558585685
PCO .li' b 2as® ® 11 March 2012
e me®Lo ¥ 003y 0000000000000 5V Vx

Fig. 23: The wiring diagram for an alternative method of testing the A/D and D/A converters
together, without the aid of a multimeter and potentiometer.

The dad test sends 17 different digital values to the D/A (0 to 255 in even jumps, then back down to
0). The resulting values are then read in from the A/D. Both the original digital values sent and the
values read back are printed out, as is a bar graph representing the value read back (divided by 16 as
in atod). The bar graph printed out should be a triangle shape: the lines will start out very short, then
get longer and longer as larger digital values are read back, then will get shorter again.

ATmega device

The Gertboard can hold an Atmel AVR microcontroller, a 28-pin ATmega device, at location U8 on
the lower left of the board. This can be any of the following: ATmega48A/PA, 88A/PA, 168A/PA or
328/P in a 28-pin DIP package. The device has a 12MHz ceramic resonator attached to pins 9 and 10.
All input/output pins are brought out to header J25 on the left edge of the board. There is a separate 6-
pin header (J23 on the left side of the board) that can be used to program the device.

The PDO/PD1 pins (ATmega UART TX and RX) are brought out to pins placed adjacent to the
Raspberry Pi UART pins so you only need to place two jumpers to connect the two devices.

Note that the ATmega device on the Gertboard operates at 3.3Volts. That is in contrast to the
‘Arduino’ system which runs at 5V. It is also the reason why the device does not have a 16MHz
clock. In fact at 3V3 the maximum operating frequency according to the specification is just under
12MHz. Warning: many of the Arduino example sketches (programs) mention +5V as part of the
circuit. Because we are running at 3.3V, you must use 3.3V instead of 5V wherever the latter is
mentioned. If you use 5V you risk damaging the chip.

The ATmega device is in the schematics on page A-6.

Programming the ATmega

Programming the ATmega microcontroller is straightforward once you have all the infrastructure set
up, but it requires a fair bit of software to be installed on your Raspberry Pi. We are immensely
grateful to Gordon Henderson, of Drogon Systems, for working out what needed to be done and
providing the customized software. Using his system, you can use the Arduino IDE (Integrated
Development Environment) on the Raspberry Pi to develop and upload code for the ATmega chip on
the Gertboard. The Atmel chips most commonly used on the Gertboard are the ATmegal68 and
ATmega328, so Gordon assumes you have one of these.

To use Gordon’s system, first you need to install the Arduino IDE. Then you download a custom
version of avrdude, which allows you to program the AVR microcontroller using the SPI bus.
(GPIO pins GPIO7 through GPIO11 can be used as a SPI bus.) Then you have to edit various
configuration files to fully integrate the Gertboard into the Arduino IDE. Finally, you have to program
the ‘fuses’ on the ATmega chip. Happily, Gordon has written some scripts to do all this for you. Full
instructions, scripts, and the modified avrdude are available at:
https://projects.drogon.net/raspberry-pi/gertboard/ We assume now that you have downloaded and
successfully installed and configured the Arduino IDE, as described above, and we proceed from
there.

To get going with the ATmega chip, start up the Arduino IDE. This should be easy: if the installation
of the Arduino package was successful, you will have a new item “Arduino IDE” in your start menu,
under “Electronics”. The exact version of the IDE you get with depends on the operating system you
are using. The version number is given in the title bar. The Debian squeeze package is version 0018,
while the wheezy package is 1.0.1. First you will need to configure the IDE to work with the
Gertboard. Go to the Tools > Board menu and choose the Gertboard option with the chip you are
using (ATmegal68 or ATmega328). For IDE version 1.0.1, you will also have go to the Tools >
Programmer menu and choose “Raspberry Pi GPIO”.

Arduino pins on the Gertboard

All the input and output pins of the ATmega chip are brought out to header J25 on the left edge of the
board. They are labelled PCn, PDn, and PBn, where n is a number. These labels correspond to the
pinout diagrams of the ATmegal68/328 chips. However, in the Arduino world, the pins of the chips
are not referred to directly. Instead there is an abstract notion of digital and analogue pin numbers,
which is independent of the physical devices. This allows code written for one Arduino board to be
easily used with another Arduino board, which may have a chip with a different pinout. Thus, in order
to use your Gertboard with the Arduino IDE, you need to know how the Arduino pin number relates
to the labels on your Gertboard. The table below shows this correspondence (“GB” means Gertboard).

Arduino Pin | GB pin | Arduino Pin | GB pin Arduino Pin GB pin
digital 0 PDO digital 7 PD7 analogue 0, A0 PCO
digital 1 PD1 digital 8 PBO analogue 1, Al PC1
digital 2 PD2 digital 9 PB1 analogue 2, A2 PC2
digital 3 PD3 digital 10 PB2 analogue 3, A3 PC3
digital 4 PD4 digital 11 PB3 analogue 4, A4 PC4
digital 5 PD5 digital 12 PB4 analogue 5, AS PC5
digital 6 PD6 digital 13 PB5

Table 4: The relationship between pins on Arduino and pins on the Gertboard.

In both versions of the Arduino IDE, digital pins are referred to in the code with just a number. For
example

digitalWrite (13, HIGH);

will set pin 13 (PB5 on the Gertboard) to logical 1. (In the Arduino world, LOW refers to logical 0, and
HIGH refers to logical 1.)

The analogue pins are handled slightly differently. In version 0018, analogue pins are referred to
simply by number, so whether 0 refers to PDO (a digital pin) or PCO (an analogue pin) depends on the
context. The command

value = digitalRead(0);

will cause a read from digital 0 (PD0), and value will be assigned LOW or HIGH, while the
command

value = analogRead(0);

will cause a read from analogue 0 (PCO0), and value will be assigned a number between 0 and 1023,
as the A/D converters in the ATmega chip return 10 bit values.

In version 1.0.1, however, although numbers 0 through 5 still work to specify analogue pins, they are
referred to in the examples as A0 to AS, and this seems to be the preferred style now. So to read from
analogue pin 0 you would use the command

value = analogRead (A0);

A few sketches to get you going

A good first sketch to try is B1 ink, which makes an LED turn on and off. With version 0018 of the
IDE it’s in the File > Examples > Digital menu; in 1.0.1 it’s in the File > Examples > Basics menu.
When you select this, a new window pops up with the Blink code. There are only two functions in the
code, setup and 1oop. These are required for all Arduino programs: setup is executed once at the
very beginning, and 1oop is called repeatedly, as long as the chip has power. Note that you do not
need to provide any code to call these functions.

The modified avrdude that you downloaded uses the SPI bus to upload the code to the ATmega
chip, so you need to connect the GPIO pins used for the SPI bus to the 6-pin header J23, as in the
diagram below. Here you are simply connecting the SPI pins in the GPIO to the corresponding SPI
pins in the header. The arrangement of the pins in J23 is shown in the schematics, on page A-6.

s d P 2grPp LR E EC
W BlRLlRLlBl3lBlBdlBdlBldlalsd
@e] -!looooooooooooooooooooooolm P E P PY
"'@eeee® wEeeee S| Ml °

GND F1 Fuse max. 4A
o g’ : :: (!) (g) (!) (g) (!) (!) (!) (!) (g) (!) (!) <Q) (| u7 J.-
A0 (M- oy I‘II ISJlI Iliilm <[M| RPWR
DA1|® @
oo aine 80 e 3 TYYYYYYYY) oo —_
PB5[® ® @eeceeeo cee W RPUR
PB4|® @ = & & & U6 ~N7 (XX 2 O(RLY2
Pos@ @Mt © O outss .Ns eeecoce N B |RPHR
rrzjo o[M6 @ @ @ Iii_ s o0fo| @oiesleesl o e oy
e X XXX xxxj eejecjece © m[RPWR
PBO|® ® uto U3 wut ooocoeoe © O|RLY4
milee HOO® C’OEEI eeecece © n
rosle @ MEkn o H000000000 0000000000 g0/0c0ce © °
PD5|® @ |- o [|
PD4|® @ ™ ®
PD3|@ @ ° u
PD2|l@ @ °
PDIj@ @ e
Pol@ @ CF [HME e
PC5|® @ Cli7R24 @
PC4|® @)
PC3|® ® 2350 o . c7
rc2®@® g-ce| |® Raspberry Pi _ ® 0009 ¢ o] el |;|
PCl (@ @ £2=0 ® |/0 extension S5 585555555585 8588 a B
PCO|@|M|* pg 3350 ® 11 March 2012I! BD [| c4

oom mel®L- ® [o0]5w 0000000000000 5V Vx IGIN

Fig. 23: The wiring diagram for downloading sketches to the ATmega microprocessor.

To upload your sketch to the chip in Arduino IDE version 0018, either choose File > Upload to I/O
Board option, or click the icon with the right-pointing arrow and the array of dots. With version 1.0.1
choose File > Upload Using Programmer. It will take a bit of time to compile and upload, and then
your sketch is running. But nothing is happening! On most Arduino boards, pin 13 (the digital pin
used by this sketch) has an LED attached to it, but not the Gertboard. You have to wire up the LED
yourself. Looking at the table above, we see that digital pin 13 is labelled PBS5 on the Gertboard, so
you need to connect PB5 to one of the I/O ports. Looking back to the port diagram on page Error!
Bookmark not defined., we need to connect it to the point labelled ‘I/O’ on that diagram. Recall that
the pins corresponding to these points are BUF1 to BUF12 in the (unlabeled) single row header at the
top of the Gertboard. So if you connect PB5 to BUFI, as below, the first LED will start to blink.

E 2P e e e E EE = Bk
WV RlRladliadlidlidladdaldalalalad L S 8 =
@o - |ooooooooooooooooooooooolm o0 o i PS ®
%) ‘) H>D1 . . . ' .F1 Fuse max. 4A
01 (.) (.) (o) (o) (o)((o) (o) (o)(()I_I [e0000]” +
ADO |§§|czo1| l %17 EE“ B EE [mE cIZIRPWR
VI :
ou'e 7,000 @ 3 000000000 e .
PB5IO @ | 0000000 " RPWR
PB4|® @ us RN7 0000000 RLY2
PBJ..EE... ¢ szout g3 ..Ns oolooooe W~ |e|mRrR
jeelléeee m[o H[e NN o/N ¢ o3 [@olecieeel o |eiorys
PE1|® @ X XX XXX XXM E[]I:[]E[] soleciece o :n RPWR
PBO|® @ uto B2 B 2 ' 0000000 RLY4
reoe HOOO® Mh |°‘"|§§| 000000 © [0 m[RrWR
rosle @ [MEks o @ H000000000 0000000000 0000000 O (805
rs@e|-Ee] o [0 ru@ooeeeeeo ust | oo0o0oe O [o|m[RrwR
PD4/® @ o |0y [Homememe) 0000000 O (00
PD3|@ @ 123 @ ® [ﬂ Bl B2in B3 B4 HO00000000 go00000 © @~ |H|RPWR
m2ee — __® |0 I_JI |_ P o o Y
PDI|@ @ Emiel |o Ho0000000000 [Heeeee
rooe 2 mme (oW anzRasRS mjess o9y o
resj@ @ “tcrRel (o|H||m] 555353
PC4® ® @ @ci5 C16 T2
PC3|® @ 2350 ® . | [EER 7 ¢7 @]
PC2(® @ 3020 ® Rospberry'P| EER @ -
Pcl|® @ s22@ ® I1/10Mextehn'sél(t)){!2 g Ji B e
POlO/M)- g S0 @ are sooom N[N e
S lom molol. W (o5 coeee 5vxd Mg

Fig. 24: Wiring diagram for the sketch Bl1ink.

Note that in this diagram we have not shown the connections to the SPI pins. Once you have uploaded
the code, you no longer need them and can remove the straps. On the other hand, if you want you can
leave them in place, and this is a good idea if you are planning on uploading some other sketches
later.

Let’s look at another fairly simple sketch called But ton, located under File > Examples > Digital
menu in both 0018 and 1.0.1. The comments at the beginning of the sketch read

The circuit:

* LED attached from pin 13 to ground

* pushbutton attached to pin 2 from +5V

* 10K resistor attached to pin 2 from ground

Assuming that you have B1ink working, your LED is already wired up, but what about the button?
As mentioned above, since the ATmega chip on the Gertboard runs at 3.3V, we must replace the 5V
with 3.3V. So they suggest using a circuit like the one below, where the value read at pin 2 is logical 0
if the button is not pressed (due to the 10K pull-down resistor) and logical 1 if the button is pressed.

pin 2

. 10K
3.3v—=O0 GND

Fig. 25: Suggested switch circuit for use with But ton sketch.

However, the buttons on the Gertboard are used like this:

1 1K pull-up
GND—O 1L 133V
Raspi

Fig. 26: Circuit actually in use on the Gertboard, showing an additional 1Kk resistor to protect
the input to BCM2835.

The 1K resistor between the pushbutton and the ‘Raspi’ point is to protect the BCM2835 (the
processor on the Raspberry Pi) if you accidentally set the GPIO pin connected to ‘Raspi’ to output
instead of input. The circuit to the right of the ‘Raspi’ point happens on the Raspberry Pi: to use the
push button we set a pull-up (shown as a resistor in the circuit above) on the pin so that the value read
is logical 1 when the button is not pressed (see page 16). The Gertboard buttons are connected directly
to ground so they cannot be made to read logic 1 when pressed. If you are want to use a Gertboard
button with an Arduino sketch that assumes that the button reads 1 when pressed, the best approach is
to modify the sketch, if needed, so that it will invert the value it reads from the button. For the pull-up,
we can take advantage of the pull-ups in the ATmega chip. To do this, find the lines below in the
sketch

// initialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT) ;

and insert the following two lines after them:

// set pullup on pushbutton pin
digitalWrite (buttonPin, HIGH);

To invert the value read from the button, find the line below:

buttonSate = digitalRead (buttonPin);

and insert a ! (the negation operator in C) as follows:

buttonSate = !digitalRead (buttonPin);

Now upload this modified sketch, as described for B1 ink. We still need to attach Arduino digial pin

2 (PD2 on the Gertboard, as you can see from the table) to a button, say button 3.The ‘Raspi’ pin in
the circuit diagram above, which is where we want to read the value, is in the J3 header.

o N n cn ° = N '<_< E :
3V3 mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ. S g8 2
(@@ ooooooooooooooooooooooolm PP E o o
'*"2— @O0 @
‘> 3>H Fuse max. 4A
OPOOOORO®E S Dm LLLLLY n
Iiﬂ IS3II IEE“EE LT IRCIEA gI:IRPWR
cn
SRR .. (XXX RLY1
— o
(X (XXX u12 RLY2
RN7
I:cg u.N5 oooceooe N RPWR
DO rorg Gnnlzl (XXX XK RLY3
0000000000 EUEUEUEU" ooooo0e © RPWR
w ST MO RE SIS [soiseioes o |oimiw
cwliil oooceo0e © RPWR
rosleo @ EHkw o @ H000000000 0000000000 go0cj0o0e © RLY5
PD5|® @| 1-[H] ® ® RE0O0O0OOOO® 5 |....... : RPWR
PD4|® @ (] o xi [H o[l o[H O[H @] 0000000 RLY6
PD3|® ® st. ..lﬂ Bl B2in B3 B+ H0O00000000 o000 © RPWR
PD2|@-2) oo™ ;5 i (XX X X X X)R o o3 49
PDI|@ @] XXX oo meeeee
PDO.. |!|_qu-usgpy\mc;o::s:ll B9 B0 n B B 3V3 .
R34 DOOOODO@OD O E@m X X — < RN
pcsle® @ CT7RZ @ o | ws E3825 2 R ejapapaiapa
PC4@® ® [J @ci5 Cl6 e © OB
o e T L ; |ooooooo:=o::::go§|%| = =k s |_|
P20 @ glo@ @ Raspberry Pi g e s e o EE’ J24
PC1|® @ $250 ® |/0 extension %%%%%gggggg%%%%%%
PCO]%JE' o0 2as® ® 11 March 2012 00000000
olem me®L- ¥ (0] |oooooooo 5VVx

Fig. 27: Wiring diagram showing the additional strap necessary for button operation for the
sketch Button.

When you have done this, the first LED will be on when the third button is pressed, and off when the
third button is up.

Now let’s try using an analogue pin. Find the AnalogInput sketch under File > Examples >
Analog (in both versions 0018 and 1.0.1). This reads in a value from analogue input O (which has
already been converted by the internal A/D to a value between 0 and 1023), then uses that number as
a delay between turning an LED on and off. Thus, the lower the voltage on the analogue pin, the
faster the LED flashes. To run this example, you’ll need a potentiometer. The one used to test the A/D
will work fine here. The comments for AnalogInput say to connect the potentiometer so that the
wiper is on analogue pin 0 (PCO on the Gertboard) and the outer pins are connected to +5V and
ground. As above, you must use 3.3V instead of 5V as we’re running the chip at 3.3V here. The
diagram below shows how to connect up the Gertboard to make this sketch work after it is uploaded.

c o I ~ ® = -°— = 5‘—‘
V3 EJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ-mJ-mJ-mJ-
. ooooooooooooooooooooooolm PY E PY
M2 “@eee® ©
F1 Fuse max. 4A
(!) (g) (:) (!) (!) (!) (!) (!) (!) (g) (g) <!)I_I e0000|”
e [N
120000 3 XYYYYYYYY) ‘”EI D
@eeeeee® seleciese
us us eoooo0e
ooeo W Bt B20ut B3 . N5 ooocoooe B
YY) & 5[0 Hje MR o[6] cuo|§| eeococe ©
0000000000 HOHOE NG} eeecece ©
" o m ceesiece o
Heoo cio [] eeoeooece ©
EEky o Hooo000000 0000000000 go0c0ece ©
- o o mM@0000000 000 0j0 0o :
o |ox eoooeee
mo ° |Ji7‘|nas R;““"“ eoeoecece ©
o |o s M
W EEe |o H00000000000EOEONO] meceee f
5 [EEle| o 'Egzagg;ggeggl B _BUp BN B cam o ® WL
el oM S MEBHEEFFRY Sanan
.70 |8 ’ oumo000E Sy Eapw S
%e| |0 Raspoerry i [F€ 000000000000 00lE Eapi o
§§§O ® |/0 extension &3 855555555555 58588 J B
&35@| (@ 11 March 2012 |oooooooooooo O
mol®l - M (o] 0000000000000 5V Vx

Fig. 28: Wiring diagram for the AnalogInput sketch.

Minicom
Some of the Arduino sketches involve reading or writing data via the serial port, or UART. An
example is AnalogInSerial under File > Examples > Analog for version 0018. In version 1.0.1,

this same example has been renamed AnalogReadSerial and is under File > Examples > Basics.
This sketch sets the baud rate to 9600, then repeatedly reads in a value from analogue pin 0 and prints
this value to the serial port (also called UART). The value read in is between 0 and 1023; 0 means that
the input pin is at 0V and 1023 means that it is at the supply voltage (3.3V for the Gertboard).

To set up your Gertboard for this sketch, you need the potentiometer attached to analogue input 0 as
described above. In addition you need to connect the ATmega chip’s UART pins to the Raspberry Pi.
Digital pin 0 (PDO on the Gertboard) is RX (receive), and digital pin 1 (PD1 on the Gertboard) is TX
(transmit). These signals are also brought out to the pins labelled MCTX and MCRX just above the
GP15 and GP14 pins in header J2 on the Gertboard. Thus you can use two jumpers to attach the
ATmega’s TX to GP15 and RX to GP14, as shown below.

- & M + ©vw © ~ o o 2 = o < @ +
W BLRIRLBLRIR R R B 2 R BL L S g g
ale e ool /o
RN1 RNZM N @e . 920°S =>|;| 19

6No é) % ° 'R) %)DlFi Fuse max. 4A

28 4 (!) (.) (;) (!) (g !) (!) (.)((!)(00000’
oeml =2 (|? 20 “

O/N & W20 s3 IEEI L =) -- W mc?
g%;li{”.... 3 secsccceee iG55 0e
PBS[® ® @eeeeee0 ﬂ cogeece

P U6 vs eeooooe vi2
PO OEEO OO RN XXX XXXXH -
resle ol ST csesiess
2o olle 000 o N® N[N o[¢ GND@ eoocece o
ra1|® ® EI e000000000 Eﬂmmout ::::::: :
e o
milee HOO® ”3h |°‘°|§§| eeocjece ©
rosle @ [EEkw oo Heoooo00000 0000000000 ooooeoe ©
P05001~g o |0 ru@OOOOOOO usI;_ |::::::: :
PD4|® ® @ ® x [(H o] o]H o[H @]
FD3|® ® 123 @ (] |Ji71| Bl B2in B3 B4 R;...OQ... ooooooe ©
P02j® @ ° " o
mijoe| ™ mme |o ﬂoooooooooool Meeeee
rooj@ o 3 on® T ez R in B _ - 33
Pesl@@| TCURé@ |@[H||m| 255”
PC4® ® @ @ci5 C16 ...§§ : c7c2
PC3|® @ 2350 .
Pc2|® @ g z@| (@ Raspberry Pi (XX] (XXX L] el |i|
PC1|® @ $250 ® |/0 extension §E 8558555555555 58588 " BB
PCO ° D9 333_’. : 11 March 2012 |'.....‘....‘|i| D [| c4

o= mel® o W [e0]5: 0000000000000 5 Vx IO

Fig. 29: Wiring diagram for the sketch AnalogInSerial/AnalogReadSerial.

GPIO14 and GPIO15 are the pins that the Raspberry Pi uses for the UART serial port. If you refer
back to the table of alternate functions on page 9, you will see that GPIO14 is listed as TX and
GPIO15 as RX. This is not a mistake! This swapping is necessary: the data that is transmitted by the
ATmega is received by the Raspberry Pi, and vice versa.

Now, how to we get the Raspberry Pi to read and show us the data that the ATmega is sending out on
the serial port? There is a button labelled Serial Monitor on the toolbar of the Arduino IDE, but it
doesn’t work on the Raspberry Pi. It assumes that you are talking to an Arduino board over USB, not
talking to a Gertboard over GPIO. The easiest way to retrieve this data is to use the minicom program.
You can install this easily by typing into a terminal this command:

sudo apt-get install minicom
You can use menus to configure minicom (by typing minicom -s). Alternatively, included with the
Gertboard software is a file minirc.ama0 with the settings you need to read from the GPIO UART
pins at 9600 baud. Copy this file (which was provided by Gordon Henderson) to /etc/minicom/
(you’ll probably need to sudo this) and invoke minicom by typing

sudo minicom ama0
Now if you upload the sketch to the ATmega chip, you should see the value from the potentiometer
displayed in your minicom monitor.

These examples have only just scratched the surface of the wonderful world of Arduino. Check out
http://arduino.cc/en/Tutorial/HomePage
for much, much more.

Combined Tests
This section shows some examples of using more than one building block at a time.

A/D and motor controller

In the potmot (for potentiometer-motor) test we use a potentiometer (“pot”) connected to the
analogue to digital converter (A/D) to get an input value, and this value is used to control the speed
and direction of the motor. It is set up so that at one extreme, the motor is going at top speed, and as
you move the wiper towards the middle it slows, at the middle the motor stops, and as you continue to
move the wiper along, the motor speeds up again but in the other direction. The main routine for this
is in potmot . c. Functions from gb_ spi . ¢ and gb_pwm. c are used to control the SPI bus (for
reading the A/D) and the pulse width modulator (for controlling the speed of the motor).

To wire up the Gertboard for this example, you combine the wiring for the A/D and motor tests.
Jumpers connect GP8 to GP11 to the pins directly above them to allow us to control the SPI bus using
GPIOS8 to GPIO11. You must attach your potentiometer to the ADO input. GPIO17 controls the motor
B input and GPIO18 controls the motor A input using the pulse width modulator (PWM). Thus GP17
must be connected via a strap to MOTB, and GP18 must be connected to MOTA. The motor and its
power source must be connected to the screw terminals in J19 at the top of the board. See the wiring
diagram below.

your power [+
source —

>
goes here T-

3 m;m;m mJ.mJ.mJ.mJ.mJ.mJ-mJ-mJ.mJ- é
3 %: |§|ooooooooooooooooooooooolm . E Py o
"@eeee @eeee @009

GND o\ /0\ /O /® 3(2 ‘ @ 8 ‘ & ® F1 Fuse max. 4A

2}gﬁz:a%.()()()()())()()()()()Z)|_| w
1 m
|§§|czo1| T:ﬂI T83|I TIEEI B o/

®
g:aﬁzg.... oooooooooo| ‘”EI :::::::
PBR5[® ® @goo—uu)

o0 U U4 XX ut2
Fi3le oakt o o o sy 5 selesisce m
razjo o[G0 0 @ Exemenneme Tose env@ eoococe o
PBI|® ® oooooooooo“out' selscece o
P o Heee ”3h |°1°|§§|m celososs o
roslo @ [EHky o @ H000000000 0000000000 goj00000 ©
P05..1- of (0 ru@0000000 |::::::: :
PD4(® @ [J @ Xxi
PD3|@ ® el |e(@Z H000000000 go/0ci0ee ©
mee mame |9\l sl @ooosee9 ¢
POI|@ @ ° Heeoooo00000 .
rooe Bmme (oW aRzssszac: Me00985;
Pesl@ @ “CTRM@| |@m||m| = = SRR EE
PC4® ® @ @15 C16 S S — : Uc

LY 2350 .

Egz.. ?,E.g,. [] ROSPbe”)’ PI u.a!e:&.\l-.—mnu.::—cmml.\g?—!). EEM J24 8
Pc1;!i s230] I1/1()Mext?‘m;i(()){r2 5858855555585 5588 I BB
PCO|@|M] pyy 235O |® arc e00000000000]
o --00_@Jl [@@]3v3 |oooooooooooo 5V Vx
ig. 30: Wiring diagram for the combined potmot test.
Fig. 30: Wiring diag for th bined potmot test

In the main routine for potmot, first we print to the terminal the connections that need to be made
on the Gertboard to run this example, then we call setup_1io to set up the GPIO ready for use. Then
we call setup_gpio to set the GPIO pins the way we want them. In this, we set up GPIOS to
GPIO11 to use the SPI bus using INP_GPIO and SET_GPIO_ALT as described in the section on
A/D and D/A converters (page 27). GPIO17 is set up as an output (using INP_GPIO and
OUT_GPIO0), and GPIO18 is set up as a PWM using as INP_GPIO and SET_GPIO_ALT as
described in the section on the motor controller (page 24). Back in main, we call setup_spi and
setup_pwm to get the SPI bus and PWM ready for use and get the motor ready to go.

Then we repeatedly read the A/D and set the direction and speed of the motor depending on the value
we read. Lower A/D values (up to 511 —recall that the A/D chip used returns a 10 bit value so the
maximum will be 1023) result in the motor B input being set high, and thus the motor goes in the
“rotate one way’’ as in the motor controller table on page 22. Confusingly, this motor direction is
called “backwards” in the comments of the program! Higher A/D values (512 to 1023) result in the
motor B input being set low, and the motor goes in the “rotate opposite way” direction. This is called
“forwards” in the comments of the program. Simple arithmetic is used to translate A/D values near
511 to slow motor speeds and A/D values near the endpoints of the range (0 and 1023) to fast motor
speeds by varying the value sent to the PWM.

Decoder

The decoder implemented by the decoder program takes the three pushbuttons as input and turns on
one of 8 LEDs to indicate the number with the binary encoding given by the state of the buttons.
Switch S1 gives the most significant bit of the number, S2 the middle bit, and S3 the least significant
bit. For output, the LED D5 represents the number 0, D6 represents 1, and so on, so D12 represents 7.
Recall that the pushbuttons are high (1) when up and low (0) when pushed, so LED D12 is lit up when
no buttons are pressed (giving binary 111 or 7), D6 is lit up when S1 and S2 are pressed (giving
binary 001), etc.

There is quite a bit of wiring for this one, as we are using all but one of the I/O ports.GPIO25 to
GPIO23 are reading the pushbuttons, so you need to connect GP25 to B1, GP24 to B2, and GP23 to
B3. The 8 lowest-numbered GPIO pins are used with I/O ports 5 to 12, so you need to connect GP11
to B5, GP10 to B6, GP9 to B7, GP8 to B8, GP7 to B9, GP4 to B10, GP1to B11, and GP0 to B12. In
addition, since we are using I/O ports 5 to 12 for output, you need to install all the out jumpers for
buffer chips U4 and U5 (recall that the out jumpers are those above the chips).

— o~ ~» < wn 0 ~ o -3 e = o
W Flalalalzlalalazlzldlalsd
00 H00000000000000000000000,,. - |® ®
"@eeee "@esee "E@seeos] M
oD 0\ (0 [0\ (@) (&) (&) (&) (@) (& (& %'D'zo FT Fuse mox,
o1 % (!) (!) (!) (!) (!) (!) (!) (!) (!) (!) (!)ou t’) (| u7
C8 B Bb B g8
ovlelel. I;ﬁll I%\II I £ 5/00000100000/: =
DA1 0000000000
DAO|@[H]" ”’@ XX
PBS|® @ :::::::
PB4(® @ RN7 ut
PB3|® @ I:cs Bt B20ut B3 H.Ns (XXX .
2o ® HE[0 N/ N[N O ¢ Jofo| @ejoeiseel o
S 0000000000 EU solecece o
ou DX
e HO®® . |°1°|§§| scececs o
rslo @ EHkn ol @ H000000000 0000000000 go0000e ©
PD5|® @ | 1[H] of o MN@EOOGOGOOOO 5 0:::::: :
PD4|® ® [® X [H o] o|H O]H 0
PD3|@ @ 123 @ ® |Ji71| Bl B2in 85 B4 R;..‘...... ooeoooe ©
peel — __o @ 3 " o
ool T e o Eeeeee
rooj@ o [N mulel |omT™ Nn.m o 2V3
PCS @@ T CTRM@| |@[H] (M| 222 2
PC4|® @ @ @15 C16 e 2"‘ EE
PC3|® @ 2350 ® . 1 7
pc2@® 3-ce |@ Raspberry Pi A OOOVOD| & i @
PCcl|® @ £3ze ® /0 extension EE 5585555555585 88688 a B
PCO|@ M| 1o 235O ® 11 March 2012 XXX X XXX XXXX[] BD
MICL LN TR |ooooooooooooo 5V Vx

Fig. 31: Wiring diagram for the decoder test.

In the main routine for decoder, as always we start out by printing out to the terminal the
connections that need to be made on the Gertboard. Then we call setup_1io to set up the GPIO
ready for use. Then we call setup_gpio to set GPIO25 to 23 for use with the pushbuttons (by
selecting them for input and enabling a pull-up, as described on page 16) and to set GPIO11 to GP7,
GPIO4, GPIO1, and GPIOO up as outputs (as described on page 11). Then we enter a loop where we
read the state of the pushbuttons and light up the LED corresponding to this number (after turning off
the LED previously set). We turn the LEDs on and off using GPIO_SETO0 and GPIO_CLRO as
described on page 17.

For More Information

For further information, the datasheet for the processor can be found here:
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

Appendix A: Schematics
We have included the schematics for the Gertboard in the pages that follow. They are numbered A-1,
A-2, etc. The page number is located in the lower left hand of each page.

